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On remarkable properties of invariance superalgebras for the 
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Received 12 October 1988 

Abstract. Starting from the orthosymplectic superalgebra osp(3/4), we rigorously explain 
the correspondence between two superalgebras recently proposed in this journal as invari- 
ance superalgebras of the one-dimensional quantum harmonic oscillator, i.e. osp(2/2) %, 
sh(2/2) and osp(3/2). The study of the corresponding root systems as well as their properties 
with respect to their even or odd characters gives us remarkable properties of the enclosed 
subsuperalgebras of osp(3/4). Such properties and correspondences can be extended to 
the n-dimensional context. 

The largest invariance superalgebra for the n-dimensional quantum harmonic oscillator 
has recently been determined (Beckers et al 1988a). It is the semi-direct sum of the 
(simple) orthosymplectic Lie superalgebra osp(2n/2n) determined by de Crombrugghe 
and Rittenberg (1983) and the (non-simple) Heisenberg superalgebra sh(2n, 2n) first 
introduced by Beckers and Hussin (1986). Such an invariance superalgebra corre- 
sponds to kinematical (Niederer 1973) as well as to dynamical (Wybourne 1974) 
(super)symmetries. 

Another invariance superalgebra for the n-dimensional harmonic oscillator has 
also been pointed out in the journal by Englefield (1988), i.e. the (simple) orthosymplec- 
tic superalgebra osp(3,2n) as the generalisation of the Van der Jeugt structure (Van 
der Jeugt 1984) for the one-dimensional case. 

Due to the inclusion 

[osp(2n/?n) 3 sh(2n/2n)] 3 osp(3,2n) V n a l  ( 1 )  

the link between these two proposals has just been published (Beckers er a1 1988b). 
It is realised through the correspondence 

[osp(2/2n) 3sh(2/2n)]-osp(3,2n). (2) 

We notice that these last two superalgebras have the same number of generators (up 
to the identity operator of the central extension of the Heisenberg structure). The 
superalgebra osp(2/2n) 3 sh(2/2n) refers to only two fermionic degrees of freedom 
while to 2n bosonic ones. The argument proposed in order to get the correspondence 
(2) is a ‘trick’ based on the fundamental role played by the Heisenberg generators 
(Beckers and Hussin 1986). In fact, by inverting the even and odd characters of the 
non-trivial Heisenberg generators, Beckers et a1 (1988b) have reconstructed the Lie 
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subalgebra contents of osp(3,2n), i.e. so(3) and sp(2n), starting from osp(2/2n)B 
sh(2/2n). Such a correspondence is not an isomorphism but the argument can now 
be explained rigorously. This is the main purpose of this paper where we mainly 
address ourselves for simplicity to the one-dimensional context, i.e. to the correspon- 
dence 

osp(2/2) Bsh(2/2)t,osp(3/2) (3) 
dealing with 12-dimensional superalgebras. 

Let us recall some notation and conventions (Cornwell 1989). Starting from the 
complex associative superalgebra M (  p / q ;  C) easily handled through the ( p  + q )  x 
( p  + q )  matrices ekl defined by 

(ekl)ij = ak ia i j  i , j , k , l = l , 2  , . . . ,  p + q  (4) 

the complex orthosymplectic Lie superalgebra osp(p/q) is the set of matrices M of 
M ( p / q ;  C) with p 3 1 and with q positive and even such that 

M"'K+(-l)deeMKM=O. (5) 
Here Mst indicates the supertranspose of M, deg M denotes the degree of M and the 
metric is realised through 

In the following analysis instead of taking Gp = l,, it will be convenient to take 
0 1 0  

G 2 = ( y  A) and (7) 

for p = 2 and 3 respectively so that we get isomorphic superalgebras to osp(2/q) and 
osp(3/q). In particular the Lie superalgebras osp(3/4), osp(3/2) and osp(2/2) have 
now to be considered for our purpose: they are all simple and in the notation of Kac 
(1977a, b) they are denoted by B(1/2), B(1/1) and C(2) respectively. 

The 25-dimensional structure of osp(3/4) has 13 as even dimension and 12 as odd 
dimension; its rank is 3 and its three simple roots may be denoted by al  , a 2 ,  a 3 .  
Choosing a1 and a3 as the even roots and a2 as the odd root, the corresponding basis 
elements of the Cartan subalgebra may be taken to be 

(9 
(ii) 

(iii) 

with a = a ] ,  h, = ${e44 - e66 - eS5 + e77} 

with a = a 2 ,  h, = - e77 + e,  - ez2} 

with a = cy3,  h, = -:{e,, - e22}.  

The five positive even roots a of osp(3/4) and their corresponding basis elements e, 
may then be taken to be 

(i) 

(ii) 

a = al, with e, = e45 - e76 

a = a ,  + 2a, + 2a3,  with e, = e47 + eS6 

(iii) a=2a1+2a2+2a3 ,wi the ,=2e , ,  

(iv) 

(VI 

a = 2a2 + 2a3,  with ea = eS7 

a = a 3 ,  with e, = e13 - e32. 

(9) 
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Similarly the six positive odd roots a of osp(3/4) and their corresponding basis elements 
e, may be taken to be 

(i) 

(ii) 

(iii) 

a = a1 +a,+ a3, with e, = e36 - e43 
a = a,  + a 3 ,  with e, = e37 - eS3 
a = a 1  + a2+ 2a3,  with e, = eI6- e42 

(iv) 

( V I  

(vi) 

a = a2 + 2a3,  with e, = e17 - eS2 

a = a 1 +  a,, with e, = e26-e41 

a = a 2 ,  with e, = e27 - e51. 

To each positive root a there corresponds a negative root -a. All the root subspaces 
are one dimensional. 

The basis of the osp(3/2) subalgebra of osp(3/4) may be taken to consist of all 
the basis elements of osp(3/4) whose fourth and sixth rows and columns consist entirely 
of zero matrix elements. Consequently the two-dimensional Cartan subalgebra of 
osp(3/2) consists of h, with a = a2 and a 3 ,  the two positive even roots of osp(3/2) 
are a = 2 a 2 + 2 a 3  and a 3 ,  and the three positive odd roots of osp(3/2) are a = a,+ a3 ,  
a2+2a3 and a2 .  Again to each positive root CY there corresponds a negative root -a, 
and all the root subspaces are one dimensional. 

Similarly the basis of the osp(2/2) subalgebra of this osp(3/2) superalgebra may 
be taken to consist of all the basis elements of osp(3/2) whose third row and column 
consist entirely of zero matrix elements. Consequently the two-dimensional Cartan 
subalgebra of osp(2/2) consists of h, with a = a ,  and a 3 ,  the one positive even root 
of osp(2/2) is 2 a 2 + 2 a 3  and the two positive odd roots of osp(2/2) are a 2 + 2 a 3  and 
a,. As before, to each positive root a there corresponds a negative root -a, and all 
the root subspaces are one dimensional. Clearly the complement of the subalgebra 
osp(2/2) in osp(3/2), which will be denoted by osp(2/2),,,, , is the four-dimensional 
subspace of osp(3/2) (and also of osp(3/4)) that has as its basis the two even elements 
e, with a = f a 3  and the two odd elements e, with a = *(a2+ a3) .  

The Heisenberg superalgebra sh(2/2) (Beckers and Hussin 1986) consists of an 
identity I ,  two other even basis elements P+ and P- and two odd basis elements T+ 
and T- , the only non-zero commutation ([. , .I-) and anticommutation ([. , .I+) relations 
being assumed to be 

[ P - ,  P+] -  = 2wz [T-, T+]+=I. (11) 

Such a Heisenberg superalgebra sh(2/2) can also be embedded in osp(3/4) by making 
the following identifications: 

(i) 

(ii) 

(iii) 
(iv) T + = e , , w i t h a = a , + a 2 + 2 a 3  

(VI T - = - e , , w i t h a = a 1 + a 2 .  

I = e,, with a = 2a1 + 2 a 2 + 2 a 3  

P+ = (2w)’”e,, with CY = ffl +2ff2+2ff3  

P- = ( 2 ~ ) ~ ” e , ,  with a = a 1  

Apart from the fairly trivial numerical factors, all the commutation and anticommuta- 
tion relations of sh(2/2) follow from the well known theorem in the theory of simple 
Lie superalgebras (cf Kac 1977a, b, Scheunert 1979, Cornwell 1989) that states that if 
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a and ,E3 are roots of a simple Lie superalgebra gs and if e, E 2s, and ep E gSp then 
[e,,ep]E&,+p) if a + p  is a root of gS and [e,, ep]=O if a + p  is not a root of gs. 
Here evidently [e,, e@] indicates the commutator if e, and (or) ep are (is) even and 
represents the anticommutator if both e, and ep are odd. Also gs,, psp and L?s)s(a+p) 
denote the root subspaces of the roots a, ,E3 and a + p. 

The identifications (12) are then consequences of the following observations. 
(a)  The even root 2a1  +2a ,+2a3  can be written both as the sum of the two even 

rootsa ,+2a2+2a3and a1 and asthesumofthetwooddroots a l + a 2 + 2 a 3 a n d  a ,+a2 .  
( b )  If a is any of these five roots of osp(3/4) then 2a  is not a root of osp(3/4). 
(c) If a and p are any pair of these five roots of osp(3/4) (except for the two pairs 

a = a , + 2 a 2 + 2 a 3 ,  P = a ,  and a = a 1 + a 2 + 2 a 3 ,  / 3=a l+a2  of ( a ) )  then a+@ is not 
a root of osp(3/4). 

With this information let us now explore the relationships between these subalgebras 
of osp(3/4). 

(A) The subspace spanned by the basis elements of osp(2/2) and sh(2/2) together 
form a subalgebra of osp(3/4) which has the semi-direct sum structure {osp(2/2) 33 
sh(2/2)}. This follows from the theorem mentioned above and the fact that the sum 
a + p of every root a of osp(2/2) with every root p corresponding to an element e@ 
of sh(2/2) is either not a root of osp(3/4) or is a root corresponding to an element of 
sh(2/2). 

(B) If a is any of the elements P+, P - ,  T+ or T- of sh(2/2), then, with the choice 
y = - (a l  + a2 + a3) ,  the odd element ey has the property that 

[a, eyl ~osp(2/2)comp (13) 

and every basis element of 0 s p ( 2 / 2 ) ~ ~ ~ ,  appears in this way. That is, there is a 
one-to-one correspondence between the elements of the Heisenberg superalgebra 
sh(2/2) (apart from its identity) and the elements of 0 s p ( 2 / 2 ) ~ ~ ~ , .  As [Pf, e,]- are 
odd and [ T,, e,], are even, this explains the ‘character reversal’ phenomenon observed 
by Beckers et a1 (1988b). These results are consequences of the theorem stated above 
and the observation that if a is any of the roots associated with P+, P-,  T+ or T- and 
y = - (a l  + a*+ a3)  then e,+? is a member of 0 s p ( 2 / 2 ) ~ ~ ~ , .  

It is worth mentioning that the following two further results on the structure of 
osp(3/2) that were noted by Beckers et a1 (1988b) in the context of the supersymmetric 
theory of harmonic oscillators also appear naturally in this canonical Lie superalgebra 
framework. 

(C) If a is any element of osp(2/2) and b is any element of 0 s p ( 2 / 2 ) , ~ ~ ~ ,  then 

[a, bl E OSP(2/2)com, (14) 

and every element of 0 s p ( 2 / 2 ) ~ ~ ~ ,  appears in this way. This can be written more 
concisely as 

[ o s P ( ~ / ~ ) ,  0~~(2/2)compl= osP(2/2)comp* (15) 

[a,  bl E OSP(2/2) (16) 

(D) If a and b are any two elements of 0 s p ( 2 / 2 ) ~ ~ ~ , ,  then 

and every element of osp(2/2) appears in this way. Again this can be written more 
concisely as 

[osp(2/2) comp 9 O S P ( ~ / ~ )  c o m p l =  O S P ( ~ / ~ ) *  (17) 
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Both of these results are immediate consequences of the root theorem stated above 
and the root structures of osp(2/2) and osp(2/2),,,,. 

All the above properties make thus clear the correspondence (3) between the 
superalgebras osp(2/2)%,sh(2/2) and osp(3/2). Let us also point out that, for a 
one-dimensional harmonic oscillator of angular frequency w,  the physical content of 
the corresponding superalgebras is very easy to recover in connection with the previous 
works (Beckers et a1 1988a, b). For example, the generators of the two-dimensional 
Cartan subalgebra of osp(3/2) or osp(2/2) can be identified with the bosonic and 
fermionic Hamiltonians given by 

H B  = TI, =i(p’+ w’x ’ )  H F- - Y = ;ma,  

while the odd roots * a ,  lead to the supercharges Q*, etc. 
As a final comment let us mention that these n = 1 considerations can be extended 

to the n-dimensional context pointing out specific orthosymplectic chains of physically 
meaningful superalgebras. 
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